Addition of Polynomial having one variable ( Addition of 2x³-5+3x²-7x , 20x-5x²+3-x³ & 3x+4x³-7+x²)

Addition of Polynomial having one variable :


Question : Add the polynomials given bellow

2x³-5+3x²-7x , 20x-5x²+3-x³ & 3x+4x³-7+x²


Answer :

 There are two types of solving process.

 1) Horizontal method

 2) Vertical method


1) Horizontal method :


  (2x³-5+3x²-7x) + (20x-5x²+3-x³) + (3x+4x³-7+x²)

= (2x³+3x²-7x-5) + (-x³-5x²+20x+3) + (4x³+x²+3x-7)

= 2x³+3x²-7x-5-x³-5x²+20x+3+4x³+x²+3x-7

= 2x³-x³+4x³ + 3x²-5x²+x² - 7x+20x+3x - 5+3-7

= 6x³ - x³ + 4x² - 5x² + 23x - 7x + 3 - 12

= 5x³ - x² + 16x - 9

                                      (Ans.)


Explanation : 

● First we can write the question by using " + " sine and brackets.

●Then in each bracket arrange the polynomials by there standard form.

● After arrengement we open the bracket.

● Write all the like term together.

● Add or subtract the like term as according to there " + " or " - " sine.


2) Vertical method :


                    2x³ + 3x² -    7x  - 5 

                     -x³  - 5x² + 20x + 3

       ( + )      4x³ +   x² +   3x  - 7

          --------------------------------------------

                   5x³  -  x²  +  16x  -  9

                                                             (Ans.)


Explanation : 

● First write the 1st polynomial as there standard form.

● Then write other polynomials are. But carefully the like term are arranged like a vertical line.

● After the arrengement add or subtract the monomial.


                                                   Written by : Jayanta Kumar Meher (BSc, BEd)

Post a Comment

1 Comments