QUESTION : If A+B+C=180° and cosA=CosB.cosC then prove that tanB.tanC=2
SOLUTION :
A + B + C = 180° (given)
=> B + C = 180° - A
=> cos(B + C) = cos(180° - A)
=> cosB . cosC - sinB . sinC = -cosA
cosB . cosC - sinB . sinC -cosA
=> --------------------------------------- -- -----------
cosA cosA
cosB . cosC sinB . sinC -cosA
=> ------------------- - ------------------ -- -----------
cosA cosA cosA
cosB . cosC sinB . sinC -cosA
=> ------------------- - ------------------ -- -----------
cosB . cosC cosB . cosC cosA
=> ------------------- - ------------------- -- -----------
sinB sinC - cosA
=> 1 - ----------- × ----------- -- -----------
cosB cosC cosA
=> 1 - tanB . tanC = - 1
=> 1 + 1 = tanB . tanC
=> 2 = tanB . tanC
=> tanB . tanC = 2
(Proved)
Written by : Jayanta Kumar Meher (BSc, BEd)
0 Comments